L09 Introduction to Mechanism Design

CS 280 Algorithmic Game Theory Ioannis Panageas

Inspired by by J. Hartline and T. Roughgarden notes

Definition (Single-item). The single-item allocation problem is given by

- a single indivisible item,
- *n* agents competing for the item,
- each agent *i* has an associated value/valuation v_i for getting the item.

Definition (Single-item). The single-item allocation problem is given by

- a single indivisible item,
- *n* agents competing for the item,
- each agent *i* has an associated value/valuation v_i for getting the item.

Goal: maximize the social surplus, i.e., the value of the agent who receives the item.

Definition (Single-item). The single-item allocation problem is given by

- a single indivisible item,
- *n* agents competing for the item,
- each agent i has an associated value/valuation v_i for getting the item.

Goal: maximize the social surplus, i.e., the value of the agent who receives the item.

Example:

- Ask the agents/bidders to report their values (bids), each agent reports b_i .
- Select the agent i^* with highest report $(i^* = \text{argmax}_i b_i)$.
- Allocate item to i^* .

Definition (Single-item). The single-item allocation problem is given by

- a single indivisible item,
- *n* agents competing for the item,
- each agent i has an associated value/valuation v_i for getting the item.

Goal: maximize the social surplus, i.e., the value of the agent who receives the item.

Example:

- Ask the agents/bidders to report their values (bids), each agent reports b_i .
- Select the agent i^* with highest report $(i^* = \text{argmax}_i b_i)$.
- Allocate item to i^* .

If your $v_i = 1$ \$, how would you play?

Definition (Single-item). The single-item allocation problem is given by

- a single indivisible item,
- *n* agents competing for the item,
- each agent i has an associated value/valuation v_i for getting the item.

Goal: maximize the social surplus, i.e., the value of the agent who receives the item.

Example:

- Ask the agents/bidders to report their values (bids), each agent reports b_i .
- Select the agent i^* with highest report $(i^* = \text{argmax}_i b_i)$.
- Allocate item to i^* .

If your $v_i = 1$ \$, how would you play? You should always bid the highest number you can think of!

Definition (Single-item). The single-item allocation problem is given by

- a single indivisible item,
- *n* agents competing for the item,
- each agent i has an associated value/valuation v_i for getting the item.

Goal: maximize the social surplus, i.e., the value of the agent who receives the item.

Example:

- Ask the agents/bidders to report their values (bids), each agent reports b_i .
- Select the agent i^* with highest report $(i^* = \text{argmax}_i b_i)$.
- Allocate item to i^* .

If your $v_i = 1$ \$, how would you play? You should always bid the highest number you can think of! Outcome of mechanism is unpredictable, hard to reason about performance

Approach 1 (Lottery). select a uniformly random agent, and allocate the item to that agent.

Approach 1 (Lottery). select a uniformly random agent, and allocate the item to that agent.

Theorem (lottery *n*-approximation). The lottery mechanism has *n*-approximation ratio (i.e., $n = \frac{OPT}{alg}$).

Approach 1 (Lottery). select a uniformly random agent, and allocate the item to that agent.

Theorem (lottery n -approximation). The lottery mechanism has *n*-approximation ratio (i.e., $n = \frac{OPT}{alg}$).

Proof. Consider $v_1 = 1$ and $v_i = \epsilon$ for $i \geq 2$. Expected surplus is

$$
\frac{1}{n}\left(1+(n-1)\epsilon\right).
$$

Thus approximation ratio is $\frac{n}{1+(n-1)\epsilon} \to n$ as $\epsilon \to 0$.

Approach 1 (Lottery). select a uniformly random agent, and allocate the item to that agent.

Theorem (lottery *n*-approximation). The lottery mechanism has *n*-approximation ratio (i.e., $n = \frac{OPT}{alg}$).

Proof. Consider $v_1 = 1$ and $v_i = \epsilon$ for $i \geq 2$. Expected surplus is

$$
\frac{1}{n}\left(1+(n-1)\epsilon\right).
$$

Thus approximation ratio is $\frac{n}{1+(n-1)\epsilon} \to n$ as $\epsilon \to 0$.

Charge payments, proportionally to the agents' bids => **Discourage low-valued** agents from making high bids.

Approach 2 (First-price auction). The first-price auction is defined:

- Agents report their bids b_i .
- Select agent $i^* = \arg \max_i b_i$ (highest bid).
- i^* gets the item and pays the amount of b_{i^*} .

Approach 2 (First-price auction). The first-price auction is defined:

- Agents report their bids b_i .
- Select agent $i^* = \arg \max_i b_i$ (highest bid).
- i^* gets the item and pays the amount of b_{i^*} .

First-price auctions are **hard to reason** about. As a participant, it's hard to figure out **how to bid.** As an auction designer, it's **hard to predict** what will happen.

Approach 3 (Second-price auction). The second-price or Vickrey auction is defined:

- Agents report their bids b_i .
- Let agent $i^* = \arg \max_i b_i$ and let i^* be the agent with (second) highest bid.
- i^* gets the item and pays the amount of b_{i^*} .

Approach 3 (Second-price auction). The second-price or Vickrey auction is defined:

- Agents report their bids b_i .
- Let agent $i^* = \arg \max_i b_i$ and let j^* be the agent with (second) highest bid.
- i^* gets the item and pays the amount of b_{i^*} .

Theorem (Vickrey is truthful). In second price auctions, every bidder i has a dominant strategy: Set her bid b_i equal to her private v_i (report truthfully). Dominant means the utility of bidder *i* is maximized no matter what other bidders do.

Approach 3 (Second-price auction). The second-price or Vickrey auction is defined:

- Agents report their bids b_i .
- Let agent $i^* = \arg \max_i b_i$ and let j^* be the agent with (second) highest bid.
- i^* gets the item and pays the amount of b_{i^*} .

Theorem (Vickrey is truthful). In second price auctions, every bidder i has a dominant strategy: Set her bid b_i equal to her private v_i (report truthfully). Dominant means the utility of bidder *i* is maximized no matter what other bidders do.

> Remark: Utility of bidder *i* is $u_i := v_i - p_i$ **if he gets the item** and $u_i \coloneqq 0$ **otherwise.**

Proof. Fix an agent i and set $B = \max_{j \neq i} b_j$.

Consider the cases:

- If $b_i < B$ then i gets utility 0.
- If $b_i \geq B$ then *i* wins the item and $u_i = v_i B$.

Proof. Fix an agent i and set $B = \max_{j \neq i} b_j$.

Consider the cases:

- If $b_i < B$ then i gets utility 0.
- If $b_i \geq B$ then i wins the item and $u_i = v_i B$.

Assume that $v_i < B$.

- If i reports truthfully, she gets utility 0 (did not win the item).
- Assume not and $b_i < v_i$ then the utility of i will still be 0.
- Assume not and $B > b_i > v_i$ then the utility will still be 0.
- Assume not and $b_i \geq B > v_i$ then the utility will be negative.

Intro to AGT

Proof cont. Fix an agent i and set $B = \max_{j \neq i} b_j$.

Assume that $v_i \geq B$.

- If *i* reports truthfully, she gets utility $v_i B \geq 0$ (won the item).
- Assume not and $b_i > u_i$ then the utility of i will still be $v_i B \geq 0$.
- Assume not and $v_i > b_i \geq B$ then the utility will still be $v_i B \geq 0$.
- Assume not and $v_i \geq B > b_i$ then the utility will be 0.

Proof cont. Fix an agent i and set $B = \max_{j \neq i} b_j$.

Assume that $v_i \geq B$.

- If *i* reports truthfully, she gets utility $v_i B \geq 0$ (won the item).
- Assume not and $b_i > u_i$ then the utility of i will still be $v_i B \geq 0$.
- Assume not and $v_i > b_i \geq B$ then the utility will still be $v_i B \geq 0$.
- Assume not and $v_i \geq B > b_i$ then the utility will be 0.

No matter what other bidders do, truthtelling is best strategy (**Dominant strategy**).

A general approach

An auction should satisfy following properties:

• Dominant strategy incentive compatible (DSIC), i.e., truthtelling is dominant strategy.

A general approach

An auction should satisfy following properties:

- Dominant strategy incentive compatible $(DSIC)$, i.e., truthtelling is dominant strategy.
- (Auctioneer incentives) If bidders are truthful, auction miximizes surplus

$$
\sum_{i=1}^{n} v_i x_i
$$

where x_i is 1 if i wins the item and 0 otherwise.

A general approach

An auction should satisfy following properties:

- Dominant strategy incentive compatible $(DSIC)$, i.e., truthtelling is dominant strategy.
- (Auctioneer incentives) If bidders are truthful, auction miximizes surplus

$$
\sum_{i=1}^{n} v_i x_i
$$

where x_i is 1 if i wins the item and 0 otherwise.

• (Computational Efficiency) The auction can be implemented in polynomial time.

Problem: Consider a society of n citizens and public good G .

- Each agent has (private) valuation v_i for the good.
- Cost of building G is (publicly known) C .
- G should be built if $\sum_{i=1}^n v_i > C$.

Problem: Consider a society of n citizens and public good G .

- Each agent has (private) valuation v_i for the good.
- Cost of building G is (publicly known) C .
- G should be built if $\sum_{i=1}^n v_i > C$.

Goal: Design a mechanism that charges citizens in a way that G is built only

if $\sum_{i=1}^n v_i > C$.

Problem: Consider a society of n citizens and public good G .

- Each agent has (private) valuation v_i for the good.
- Cost of building G is (publicly known) C .
- G should be built if $\sum_{i=1}^n v_i > C$.

Goal: Design a mechanism that charges citizens in a way that G is built only

if $\sum_{i=1}^n v_i > C$.

Question: Allocating the cost C equally works? Why not?

Problem: Consider a society of n citizens and public good G .

- Each agent has (private) valuation v_i for the good.
- Cost of building G is (publicly known) C .
- G should be built if $\sum_{i=1}^n v_i > C$.

Goal: Design a mechanism that charges citizens in a way that G is built only

if $\sum_{i=1}^n v_i > C$.

Question: Allocating the cost C equally works? Why not? Answer: For citizen *i*, if $v_i > \frac{c}{n}$ \boldsymbol{n} , *i* should report $C + \epsilon$ so G will be built!

Problem: Consider a society of n citizens and public good G .

- Each agent has (private) valuation v_i for the good.
- Cost of building G is (publicly known) C .
- G should be built if $\sum_{i=1}^n v_i > C$.

Goal: Design a mechanism that charges citizens in a way that G is built only

if $\sum_{i=1}^n v_i > C$.

Question: Allocating the cost C equally works? Why not? Answer: ī P $+ \epsilon$ so G will be built!

Solution: Charge citizen *i* the amount $p_i := \max(0, C - \sum_{i \neq i} v_i)$. Similarly can be shown that is DSIC.

Solution: Charge citizen *i* the amount $p_i := \max(0, C - \sum_{i \neq i} v_i)$. Similarly can be shown that is DSIC.

Definition (Quasi-linear environments). Also known as Vickrey-Groves-Clark (VCG) environments:

- \bullet n agents,
- Set of outcomes (finite) $\mathcal{X},$
- Each agent i has a valuation $v_i: \mathcal{X} \to \mathbb{R}^+$,
- Each agent has utility $u_i = v_i p_i$ where p_i is the received payment *(positive or negative).*

Solution: Charge citizen *i* the amount $p_i := \max(0, C - \sum_{i \neq i} v_i)$. Similarly can be shown that is DSIC.

Definition (Quasi-linear environments). Also known as Vickrey-Groves-Clark (VCG) environments:

- \bullet n agents,
- Set of outcomes (finite) $\mathcal{X},$
- Each agent i has a valuation $v_i: \mathcal{X} \to \mathbb{R}^+$,
- Each agent has utility $u_i = v_i p_i$ where p_i is the received payment *(positive or negative).*

Remark: This framework is called mechanism design with money.

Definition (VCG mechanism). The family of mechanisms is defined as follows:

- Agents have valuations v_i and report their bids b_i .
- Set $x^* = \arg \max_{x \in \mathcal{X}} \sum_{i=1}^n b_i(x)$.

• Each agent pays
$$
p_i := \underbrace{h_i(b_{-i})}_{within\, i} - \underbrace{\sum_{j \neq i} b_i(x^*)}_{within\, i}
$$

• Each agent has utility $u_i = v_i(x^*) - p_i(x^*)$.

Definition (VCG mechanism). The family of mechanisms is defined as follows:

- Agents have valuations v_i and report their bids b_i .
- Set $x^* = \arg \max_{x \in \mathcal{X}} \sum_{i=1}^n b_i(x)$.

• Each agent pays
$$
p_i := \underbrace{h_i(b_{-i})}_{without i} - \underbrace{\sum_{j \neq i} b_i(x^*)}_{within i}
$$

• Each agent has utility $u_i = v_i(x^*) - p_i(x^*)$.

Theorem (VCG is DSIC). Every VCG mechanism is DSIC.

Proof. Fix an agent i and let $x^* = \arg \max \sum_{i=1}^n v_i(x)$. Assume that i reports $b_i \neq v_i$ and x' be the maximum if i reports b_i .

Definition (VCG mechanism). The family of mechanisms is defined as follows:

- Agents have valuations v_i and report their bids b_i .
- Set $x^* = \arg \max_{x \in \mathcal{X}} \sum_{i=1}^n b_i(x)$.

\n- Each agent pays
$$
p_i := h_i(b_{-i}) - \sum_{j \neq i} b_i(x^*)
$$
\n- By definition of $x^* u_i \geq u'_i$
\n- Each count has *utility* $u_i = u_i(x^*) - u_i(x^*)$
\n

• Each agent has utility $u_i = v_i(x^*) - p_i(x^*)$.

Theorem (VCG is DSIC). Every VCG mechanism is DSIC.

Proof. Fix an agent i and let $x^* = \arg \max \sum_{i=1}^n v_i(x)$. Assume that i reports $b_i \neq v_i$ and x' be the maximum if i reports b_i . Observe that $u_i = v_i(x^*) + \sum_{j \neq i} v_i(x^*) - h_i(v_{-i})$ if *i* reports v_i and $u'_i = v_i(x') + \sum_{j \neq i} v_i(x') - h_i(v_{-i})$ if *i* reports b_i .

Question: What is an appropriate choice for h_i ? Answer: So that utility is non-negative (payment at most the valuation).

Question: What is an appropriate choice for h_i ? Answer: So that utility is non-negative (payment at most the valuation).

Definition (VCG mechanism). The family of mechanisms is defined as follows:

- Agents have valuations v_i and report their bids b_i .
- Clark pivot • Set $x^* = \arg \max_{x \in \mathcal{X}} \sum_{i=1}^n b_i(x)$.
- Each agent pays $p_i := \max_x \sum_{j \neq i} b_i(x) \sum_{j \neq i} b_i(x^*)$
- Each agent has utility $u_i = v_i(x^*) p_i(x^*)$.

Question: What is an appropriate choice for h_i ? Answer: So that utility is non-negative (payment at most the valuation).

Definition (VCG mechanism). The family of mechanisms is defined as follows:

- Agents have valuations v_i and report their bids b_i .
- Clark pivot • Set $x^* = \arg \max_{x \in \mathcal{X}} \sum_{i=1}^n b_i(x)$.
- Each agent pays $p_i := \max_x \sum_{j \neq i} b_i(x) \sum_{j \neq i} b_i(x^*)$
- Each agent has utility $u_i = v_i(x^*) p_i(x^*)$.

Remark: For single-item, this is the second-price auction! VCG might not be efficiently computable (e.g., combinatorial auctions)